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1. Introduction

The conjectured duality between thermal gauge theory and gravity in one higher dimen-

sional AdS spacetime is a useful tool to extract information about strongly coupled large

N gauge theory. For example different thermodynamic variables like free energy, entropy,

etc. of large N SU(N) gauge theory in (3 + 1) dimensions in large ’t Hooft coupling

regime can be conjectured by calculating the thermodynamic variables of black hole in five

dimensional AdS spacetime.

If we consider a black object with translation invariant horizon, for example black D3

brane geometry, one can also discuss hydrodynamics - long wave length deviation (low

frequency fluctuation) from thermal equilibrium. In addition to the thermodynamic quan-

tities the black brane is also characterised by the hydrodynamic parameters like viscosity,

diffusion constant, etc. . The black D3 brane geometry with low energy fluctuations (i.e.

with hydrodynamic behaviour) is dual to some finite temperature gauge theory plasma liv-

ing on boundary with hydrodynamic fluctuations. Therefore studying the hydrodynamic

properties of strongly coupled gauge theory plasma using the AdS/CFT duality is an in-

teresting subject of current research. The energy momentum tensor of a relativistic viscous

conformal fluid is given by (up to first order in derivative expansion),

Tµν = (e + p)uµuν + pηµν − 2ησµν (1.1)
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where uµ is fluid 4-velocity with uµuµ = −1, e is energy density, p is pressure and η is shear

viscosity coefficient. σµν is defined in (2.13). Conformal invariance implies that e = 3p.

The first attempt to study hydrodynamics via AdS/CFT was [1]. The authors related the

shear viscosity coefficient η of strongly coupled N = 4 gauge theory plasma in large Nlimit

with the absorption cross-section of low energy gravitons by black D3brane. Other hydro-

dynamic quantities like speed of sound, diffusion constants, drag force on quarks, etc. can

also be computed in the context of AdS/CFT (See [2] for review and the references therein).

If we consider the ’t Hooft coupling to be very large but finite, then we have to include

the string theory contributions to thermodynamic and hydrodynamic quantities, i.e. we

need to improve the supergravity results by including the higher derivative terms in the

action. The higher derivative (string theory) corrections to shear viscosity have been

calculated in [4 – 6].1 There exists a “viscosity bound conjecture” [3] which states that the

viscosity to entropy ratio η
s

has a lower bound,

η

s
≥ 1

4π
(1.2)

for all relativistic quantum field theories at finite temperature. In fact in presence of the R4

term which is the first higher derivative correction that appears in type IIB string theory

the viscosity entropy ratio is greater than 1
4π

. But the presence of Gauss-Bonnet term in

the Lagrangian seems to violate the “viscosity bound conjecture”. Interested readers are

referred to follow [5, 6, 8] for detailed discussions. In all the cases the transport coefficients

have been determined either by the Kubo formula (graviton absorption) or by quasi-normal

mode calculation [9, 10] or using the membrane paradigm approach [11].

Recently2 in [12] the authors have developed an elegant systematic framework to con-

struct the nonlinear fluid dynamics, order by order in boundary derivative expansion. The

five dimensional Einstein equations with a negative cosmological constant with appropriate

boundary conditions can be reduced to nonlinear equations of fluid dynamics. In this small

note we have generalised the construction of local black brane geometry to higher derivative

gravity. We started with Gauss-Bonnet term as a toy model. We have found the solution

of α′ corrected Einstein equations only up to first order in boundary derivative expansion.

Once we obtained the α′ corrected geometry we calculate the boundary stress tensor up

to first order in derivative expansion. From the expression of stress tensor one can read

the α′ correction to shear viscosity coefficient. We have also calculated the ratio of shear

viscosity to entropy and the result agrees with existing results in literature calculated in

other ways [5, 6]. Though we have found the correction to the metric up to first order

in derivative expansion, it would be interesting to find the corrections to the metric and

stress tensor up to second order in derivative expansion [27].

We proceed in the same way of [12]. The presence of Gauss-Bonnet term preserves

all the symmetries of AdS5 spacetime. We have also worked in the Eddington-Finkelstein

1See also [7].
2Also in [13], authors have discussed second order hydrodynamics for conformal fluid. See also [14, 15]

and [16] for related discussion.
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coordinate. Our solutions are also non-singular away from r = 0, and specially at the

location of the horizon.

The plan of the paper is following. In section 2 we will very briefly sketch the calculation

framework of [12] and in section 3 we will display our results. We finish our paper with

some concluding remarks (section 4).

2. Fluid dynamics from gravity: the computational framework

In this section we will briefly sketch the working procedure of [12]. For detailed discussion

readers are referred to the original paper. We will also skip the technical details in this

section.

• Consider the Einstein-Hilbert action with negative cosmological constant

I = − 1

16πG5

∫

d5x
√−g

(

R +
12

L2

)

(2.1)

where L is the radius of AdS space.

• The equation of motions are given by3

EMN = RMN − 1

2
RgMN − 6

L2
gMN = 0. (2.2)

• There exists a class of solutions to these equations of motion given by the “boosted

black branes”,4

ds2 = −2uµdxµdr − r2

L2
f(br)uµuνdxµdxν +

r2

L2
(uµuν + ηµν) dxµdxν (2.3)

with,

f(r) = 1 − 1

r4
,

uv = −γ

and ui = γβi (2.4)

where, γ = 1/

√

1 − ~β2.

• Putting the values of uµ’s the metric can also be written as,

ds2 = 2γdvdr − r2

L2
γ2f(br)dv2 +

r2

L2
dxidxi +

r2

L2
(γ2 − 1)dv2 − 2γβidxidr

−2
r2

L2
γ2(1 − f(br))βidxidv +

r2

L2
γ2(1 − f(br))βiβjdxidxj. (2.5)

The solution is parametrised by four constant parameters b and βi’s.

3xM = {v, r, ~x}.
4xµ = {v, ~x}.
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• The black brane horizon is located at rH = 1/b and the temperature of this black

brane is given by,

T =
1

πbL2
. (2.6)

• Consider the metric (2.5) and replace the constant parameters b and βi’s by slowly

varying functions b(xµ) and βi(x
µ)’s of boundary coordinates xµ

ds2 = 2γdvdr− r2

L2
γ2f(b(xα)r)dv2+

r2

L2
dxidxi+

r2

L2
(γ2−1)dv2−2γβi(x

α)dxidr (2.7)

−2
r2

L2
γ2(1−f(b(xα)r))βi(x

α)dxidv+
r2

L2
γ2(1−f(b(xα)r))βi(x

α)βj(x
α)dxidxj.

We will call this metric g(0)(b(xα), βi(x
α)).

• In general the metric (2.7) is not a solution to Einstein equations unless one adds

some corrections to the metric and also the parameters b(xα), βi(x
α) satisfy some set

of equations, which turn out to be the equations of boundary fluid mechanics.

• Write the parameters b(xα) and βi(x
α) and the metric as a derivative expansion of

the parameters. Up to first order in derivative expansion,

g = g(0)(b(xα), βi(x
α)) + ǫg(1)(b(xα), βi(x

α)), (2.8)

b(xα) = b(0)(xα) (2.9)

and

βi(x
α) = β

(0)
i (xα) (2.10)

where ǫ is a dimensionless parameter whose power counts the number of (bound-

ary)spacetime derivatives acting on the parameters. Since b(1)(xα) and β
(1)
i (xα) do

not enter into the first order equation of motions, we have kept the expansion for b

and βi’s up to leading order.5

• In general one can write the metric and parameters as power series of ǫ. Then

plug the metric in Einstein equations and solve the metric and the parameters order

by order (in ǫ). For example in our case since we are interested up to first order,

we will plug the metric in Einstein equations and solve for g(1) and the constraint

equations imply some relations between the zeroth order parameters. We will work

in a particular gauge,

Tr
(

(g(0))−1g(1)
)

= 0. (2.11)

• After finding the metric with first order fluctuations one can find the boundary stress

tensor (using the definition given in [17, 18]). The form of the boundary stress up to

first order in derivative expansion is given by,

16πG5Tµν = T 4π4L3 (4uµuν + ηµν) − 2T 3π3L3σµν , (2.12)

5b(0) and β
(0)
i satisfy zeroth order energy momentum conservation equation.
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where σµν is given by,

σµν = Pα
µ P β

ν ∂(αuβ) −
1

3
Pµν∂αuα (2.13)

and Pµν = uµuν + ηµν .

3. Higher derivative correction to first order hydrodynamics

In this section we will explicitly show how one can generalise this procedure to higher

derivative action. We will consider the Gauss-Bonnet action as a toy example. We will

show how the first order metric and constraint relations receive α′ corrections. As a result

the boundary stress tensor also receives an α′ correction. We have considered the Gauss-

Bonnet term as a perturbation and hence our metric and stress tensor is correct up to first

order in α′.

3.1 The action

We will start with following action,

I = − 1

16πG5

∫

M

d5x
√−g

(

R +
12

L2

)

− α′

16πG5

∫

M

d5x
√−gLGB (3.1)

where,

LGB = RMNPQRMNPQ − 4RMNRMN + R2. (3.2)

The equation of motion is

EMN = RMN − 1

2
RgMN − 6

L2
gMN − α′

2
gMNLGB

+2α′

(

RMPQLR PQL
N − 2RPQRMPNQ − 2R Q

M RNQ + RRMN

)

= 0. (3.3)

3.2 The counterterm and boundary CFT stress tensor

As usual in gravity theories, the action (3.1) should be supplemented with suitable bound-

ary terms, for a well-defined variational principle. For Einstein gravity, one consider the

Gibbons-Hawking surface term [19]

I
(E)
b = − 1

8πG5

∫

∂M

d4x
√−γK , (3.4)

where γµν and K are the induced metric and the trace of the extrinsic curvature of the

boundary, respectively.

γµν = gµν − nµnν , (3.5)

Kµν = −1

2
(∇µnν + ∇νnµ) (3.6)

and nµ is unit outward normal vector to the asymptotic boundary hypersurface.
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A similar term occurs for Gauss-Bonnet gravity and reads [20, 21]

I
(GB)
b = − 1

8πG5

∫

∂M

d4x
√−γ

{

2α′

(

J − 2E(1)
µν Kµν

)}

, (3.7)

where E
(1)
µν is the four-dimensional Einstein tensor of the metric γµν and J is the trace of

Jµν =
1

3

(

2KKµρK
ρ
ν + KρσKρσKµν − 2KµρK

ρσKσν − K2Kµν

)

. (3.8)

Variation of the action I + I
(E)
b + I

(GB)
b now gives an expression which does not contain

normal derivatives of δgµν .

It is well known that the total action has divergence even at tree level. The divergence

arises from integrating over the infinite volume of spacetime. We regularise this divergence

by using the procedure proposed by Balasubramanian and Kraus [17], which furnishes a

method for calculating gravitational action and conserved quantities without reliance on

any reference spacetime. This technique was inspired by AdS/CFT correspondence and

consists of adding suitable counter terms Ict to the action of the theory in order to ensure

the finiteness of the boundary stress tensor [22].

We have found that the on-shell action can be regularised by the following counter

term (see also [23]).

Ict =
1

8πG5

∫

∂M

d4x
√−γ

(

c1 +
c2

2
R

)

(3.9)

where c1 and c2 are functions of α′. R is the Ricci scalar made out of boundary metric γ.

For flat boundary geometry (R1 ×R3), R = 0 and the counterterm turns out to be (up to

first order in α′),

Ict =
1

8πG5

∫

∂M

d4x
√−γ

(

3

L
− α′

L3

)

. (3.10)

Varying the total action (which contains the boundary terms (3.4), (3.7) and (3.10))

with respect to the boundary metric γµν , we compute the divergence-free boundary stress-

tensor

Sµν =
1

8πG5

(

Kµν − Kγµν + 2α′(3Jµν − Jγµν) − 3

L2
γµν +

α′

L3
γµν

)

. (3.11)

Since the CFT metric is given by,

hµν = lim
R̃→∞

L2

R̃2
γµν , (3.12)

the boundary CFT stress tensor is given by [18],

Tµν = lim
R̃→∞

R̃2

L2
Sµν = lim

R̃→∞

R̃2

L2

1

8πG5

(

Kµν−Kγµν +2α′(3Jµν−Jγµν)− 3

L
γµν +

α′

L3
γµν

)

(3.13)

where R̃ is the cutoff in radial direction. The gauge theory lives on the boundary of the

AdS space which is at r = R̃.
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3.3 Solution to the equation of motions

The solution to the equation of motion is given by the metric [24],

ds2 = 2dvdr − r2

L2
f(br)dv2 +

r2

L2
dxidxi, (3.14)

where the function f(br) is given by,

f(br) = 1 − 1

(br)4
+

2α′

L2

(

1 +
1

(br)8

)

. (3.15)

The horizon radius rH is given by,

rH =
1 − α′

L2

b
(3.16)

and the temperature of this black brane is,

T =
f ′(rH)

4π
=

1

πbL2

(

1 − α′

L2

)

. (3.17)

By giving a coordinate transformation one can obtain the boosted black brane metric

which is of the following form (uµ = (−γ, γ~β)),

ds2 = 2γdvdr − r2

L2
γ2f(br)dv2 +

r2

L2
dxidxi +

r2

L2
(γ2 − 1)dv2

−2γβidxidr − 2
r2

L2
γ2(1 − f(br))βidxidv +

r2

L2
γ2(1 − f(br))βiβjdxidxj . (3.18)

The CFT metric is given by (3.12). In α′ → 0 limit the CFT metric hµν is simply the

Minkowski metric ηµν . But when we include the α′ correction then the CFT metric is no

longer ηµν . It has the following form (for the metric (3.14)),

hµν =











−1 − 2α′

L2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











. (3.19)

For metric (3.18), hµν also has off-diagonal terms proportional to α′. If we want to keep the

CFT metric to be ηµν then we have to rescale either the time coordinate v → (1−α′/L2) v

or the space coordinates xi → (1 + α′/L2) xi. Here we will rescale the time coordinate

v =

(

1 − α′

L2

)

V. (3.20)

In this rescaled coordinate (V, ~x) the metric (3.14) takes the following form,

ds2 = 2

(

1 − α′

L2

)

dV dr − r2

L2
f̃(br)dV 2 +

r2

L2
dxidxi. (3.21)
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And the temperature has also been rescaled to,

T =
1

πbL2

(

1 − 2α′

L2

)

. (3.22)

Now we can give a coordinate transformation (boost) and the boosted black brane metric

in (V ,~x) coordinate becomes,

ds2 = 2γ

(

1 − α′

L2

)

dV dr − r2

L2
γ2f̃(br)dV 2 +

r2

L2
dxidxi +

r2

L2
(γ2 − 1)dV 2 (3.23)

−2γ

(

1− α′

L2

)

βidxidr−2
r2

L2
γ2(1−f̃(br))βidxidV +γ2 r2

L2
(1−f̃(br))βiβjdxidxj,

where

f̃(br) =

(

1 − 2α′

L2

)

f(br). (3.24)

3.4 First order metric

In this section we will determine the metric to the first order in the derivative expansion.

The metric and the parameters are given by eq. (2.8), (2.9) and (2.10).

We will choose a coordinate to set uµ = {−1, 0, 0, 0} (i.e. uV = −1, β
(0)
i = 0,γ = 1)

and b(0) = 1 at a given point xµ = 0.6 Around this point the velocities and the temperature

fields can be expanded up to first order in derivative,

b = 1 + xµ∂µb(0) (3.25)

and

β
(0)
i = xµ∂µβ

(0)
i . (3.26)

So the metric up to first order in derivatives is given by,

ds2 = 2

(

1 − α′

L2

)

dV dr − r2

L2
f̃(r)dV 2 +

r2

L2
dxidxi − 2

(

1 − α′

L2

)

xµ∂µβ
(0)
i dxidr

−2
r2

L2
(1 − f̃(r))xµ∂µβ

(0)
i dxidV − r3

L2
xµ∂µb(0)f̃ ′(r)dV 2. (3.27)

This is the metric g(0) expanded up to first order in derivative.

As we explained earlier g(0) is not a solution to equation of motion. We have to find

the fluctuation metric g(1), which added to g(0) solves the equation of motion up to first

order in derivative expansion.

Because of spatial SO(3) symmetry of background black brane metric, we can sepa-

rately solve for the SO(3) scalars, SO(3) vectors and SO(3) symmetric traceless components

of g(1).

6From now, our xµ = {V, ~x}.
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3.4.1 The scalar sector

The scalar components of g(1) are parametrised in the following way,

g
(1)
ii (r) = 3

r2

L2
h1(r) (sum over i)

g
(1)
V V (r) =

L2

r2
k1(r)

g
(1)
V r(r) = −3

2

(

1 − α′

L2

)

h1(r). (3.28)

Here we are working in the following gauge,

Tr

(

(

g(0)
)−1

g(1)

)

= 0. (3.29)

The scalar Einstein equations (equations invariant under SO(3) rotations) are divided up

into constraint and dynamical equations.

Constraint equation 1. The first scalar constraint is

r2

L2
f̃(r)EV r + EV V = 0, (3.30)

which evaluates to
(

1 − 5α′

L2

)(

∂V b(0) − 1

3
∂iβ

(0)
i

)

= 0

i.e. ∂V b(0) − 1

3
∂iβ

(0)
i = 0. (3.31)

The constraint relation remains unchanged in presence of Gauss-Bonnet correction. This

relation is a consequence of the conservation of boundary energy momentum tensor.

Constraint equation 2. The second constraint equation is

r2

L2
f̃(r)Err + EV r = 0, (3.32)

leads to

12r3h1(r) +
(

3r4 − 1
)

h′
1(r) − L4k′

1(r) = −2L2r2

(

1 − α′

L2

)

∂iβ
(0)
i . (3.33)

Dynamical scalar equation. In addition to these constraint equations we have to add

one dynamical equation. Like [12] we will add the following simplest equation,

Err = 5h′
1(r) + rh′′

1(r) = 0. (3.34)

We will solve the equations (3.33) and (3.34) to find out the function h1(r) and k1(r).

These two equations satisfy all the regularity and normalisation conditions explained in [12].

Hence the solutions are given by,

h1(r) = 0,

k1(r) =
2

3

r3

L2

(

1 − α′

L2

)

∂iβ
(0)
i . (3.35)

– 9 –
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The constants that appear in h1(r) and k1(r) can be set to zero following the same argument

in [12]. So the scalar part of the fluctuation metric is given by,7

(

g
(1)
S

)

αβ
dxαdxβ =

2

3
r

(

1 − α′

L2

)

∂iβ
(0)
i dV 2. (3.36)

3.4.2 The vector sector

We will parametrise the vector part of the fluctuation metric as,

(

g
(1)
V

)

αβ
dxαdxβ = 2

r2

L2
(1 − f̃(r))j

(1)
i dV dxi. (3.37)

Constraint equation 3. In this sector the constraint equation is given by,

r2

L2
f̃(r)Eri + EV i = 0 (3.38)

which gives,
(

1 − 5α′

L2

)

(

∂ib
(0) − ∂V β

(0)
i

)

= 0

i.e. ∂ib
(0) − ∂V β

(0)
i = 0. (3.39)

Again the presence of Gauss-Bonnet term does not have any effect on this constraint

equation which can be interpreted as a consequence of conservation of boundary stress

tensor.

Dynamical equation for j
(1)
i (r). The dynamical equation in vector sector is, Eri = 0.

The equation for j
(1)
i (r) turns out to be,8

d

dr

(

1

r3

d

dr
j
(1)
i (r)

)

= −3
L2

r2
∂V β

(0)
i +

α′

L2

(

10L2

r6
− 3L2

r2

)

∂V β
(0)
i . (3.40)

The solution is given by,

j
(1)
i (r) = L2r3

[

1 +
α′

L2

(

1 +
2

r4

)]

∂V β
(0)
i . (3.41)

The integration constants are set to zero since the solution should be normalisable at the

boundary and the stress tensor must be renormalisable [12]. So the vector part of the

fluctuation metric is given by,

(

g
(1)
V

)

αβ
dxαdxβ = 2r∂V β

(0)
i

(

1 − α′

L2

)

dV dxi. (3.42)

3.4.3 The tensor sector

The SO(3) tensor part of g(1) can be parametrised in the following way

(

g
(1)
T

)

αβ
dxαdxβ =

r2

L2
α

(1)
ij dxidxj (3.43)

where α
(1)
ij is symmetric traceless 3 × 3 matrix.

7g
(1)
S , g

(1)
V , g

(1)
T are the scalar, vector and tensor part of the fluctuation metric g(1) respectively.

8When j
(1)
i ’s or their derivatives appear with α′, we set them to their leading order (in α′) values.
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Dynamical equation for α
(1)
ij (r). Equation for α

(1)
ij (r) follows from the Eij = 0.

d

dr

(

(r5 − r)
d

dr
α

(1)
ij (r)

)

= −6L2r2σ
(0)
ij +

α′

L2

1

r4

(

2(9 + 5r8)α
′(1)
ij (r)

)

+
α′

L2

1

r4

(

2L2r2(−4+9r4)σ
(0)
ij +2r(−3+r8)α

′′(1)
ij (r)

)

(3.44)

where,

σ
(0)
ij = ∂(iβ

(0)
j) − 1

3
δij∂mβ(0)

m . (3.45)

The solution for α
(1)
ij (r) is given by,9

(

g
(1)
T

)

αβ
dxαdxβ = 2

(

r

(

1 − α′

L2

)

− 1

4r2

(

1 − 8α′

L2

))

σ
(0)
ij dxidxj . (3.46)

Summary of α′ corrected first order calculation. The α′ corrected metric g(0) +g(1)

expanded up to first order in boundary derivatives around some point xµ where b(0) = 1

and uµ = {−1, 0, 0, 0} is given by,

ds2 = 2

(

1 − α′

L2

)

dV dr − r2

L2
f̃(r)dV 2 +

r2

L2
dxidxi − 2

(

1 − α′

L2

)

xµ∂µβ
(0)
i dxidr

−2
r2

L2
(1−f̃(r))xµ∂µβ

(0)
i dxidV − r3

L2
xµ∂µb(0)f̃ ′(r)dV 2+

2

3
r

(

1− α′

L2

)

∂iβ
(0)
i dV 2

+2r∂V β
(0)
i

(

1− α′

L2

)

dV dxi+2

(

r

(

1− α′

L2

)

− 1

4r2

(

1− 8α′

L2

))

σ
(0)
ij dxidxj . (3.47)

Global solution to first order in derivative. The metric (3.47) has been calculated

about xµ = 0 assuming b(0) = 1 and β
(0)
i = 0. But one can also write the metric about any

point. The α′ corrected global metric is given by,

ds2 =−
(

1 − α′

L2

)

uµdxµdr− r2

L2
f̃(br)uµuνdxµdxν +

r2

L2
Pµνdxµdxν +2r2bF (br)σµνdxµdxν

+
2

3

(

1 − α′

L2

)

ruµuν∂λuλdxµdxν − r

(

1 − α′

L2

)

uλ∂λ(uµuν)dxµdxν (3.48)

where F (br) is given by,

F (br) =

(

1

br

(

1 − α′

L2

)

− 1

4(br)4

(

1 − 8α′

L2

))

. (3.49)

9In the right hand side of eq. 3.44 whenever α
(1)
ij and their derivativs appear we set them to their leading

order (in α′) values.
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3.5 The energy momentum tensor

Once we obtained the α′ corrected metric up to first order fluctuations, we can find the

boundary stress tensor using the definition (3.13). Different components are given by,

16πG5TV V =
3

L5b4

(

1 − 5α′

L2

)

= 3T 4π4L3

(

1 +
3α′

L2

)

16πG5Tij =
1

L5b4

(

1 − 5α′

L2

)

δij −
2

L3b3

(

1 − 11α′

L2

)

σ
(0)
ij

= T 4π4L3

(

1 +
3α′

L2

)

δij − 2T 3π3L3

(

1 − 5α′

L2

)

σ
(0)
ij

16πG5TV i = − 4

L5

(

1 − 5α′

L2

)

xµ∂µβ
(0)
i = −4T 4π4L3

(

1 +
3α′

L2

)

xµ∂µβ
(0)
i . (3.50)

Here we have written the energy momentum tensor for the metric (3.47) i.e. about

xµ = 0 assuming that b(0) = 1 and β
(0)
i = 0 at the origin. But for the global metric (3.48)

the energy momentum tensor can be written in a covariant way. Up to first order in

derivative expansion the energy momentum tensor has the form given by eq. (1.1) (see [25]).

Therefore in presence of the Gauss-Bonnet term one can write the energy momentum tensor

in a covariant form in the following way,

16πG5Tµν =
1

L5b4

(

1 − 5α′

L2

)

(4uµuν + ηµν) −
2

L3b3

(

1 − 11α′

L2

)

σµν

= T 4π4L3

(

1 +
3α′

L2

)

(4uµuν + ηµν) − 2T 3π3L3

(

1 − 5α′

L2

)

σµν . (3.51)

The shear viscosity coefficient is given by,

η =
1

16πG5L3b3

(

1 − 11α′

L2

)

=
T 3π3L3

16πG5

(

1 − 5α′

L2

)

. (3.52)

Entropy density is given by,

s =
S

V3
=

Area

4G5V3
=

r3
H

4L3G5
=

1

4L3b3G5

(

1 − 3α′

L2

)

=
T 3π3L3

4G5

(

1 +
3α′

L2

)

. (3.53)

where V3 =
∫

d3x. Hence,
η

s
=

1

4π

(

1 − 8α′

L2

)

(3.54)

which is in agreement with [5, 6] at least to linear order in α′.

4. Discussion

In this paper we have constructed the local black D3 brane geometry in presence of Gauss-

Bonnet term in the bulk action up to first order in derivative expansion. The local solution

we found is non-singular except at r = 0. We used the counterterm method of Balasub-

ramanian and Kraus to find the boundary stress tensor, which we have expanded up to
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first order in derivatives, for the α′ corrected metric. From the expression of stress tensor

one can read the shear viscosity coefficient. We have found the α′ correction to the shear

viscosity coefficient and also to the viscosity entropy ratio. These results are in agreement

with the existing results in the literature.

Recently in [26], authors have demonstrated that given a black brane geometry with

regular event horizon the location of the horizon in radial direction turns out to be a

local function of fluid dynamical variables evaluated at the corresponding points on the

boundary. In presence of this regular local event horizon they constructed an appropriate

area form on spatial section and then taking the pull-back of this area form to the boundary

they defined a local entropy current for the dual field theory. The entropy current has the

following form

4G5L
3b3Jµ

S = uµ + O(ǫ2). (4.1)

The first order (O(ǫ)) correction to entropy current is zero. As mentioned in [26] finding

out the α′ correction to entropy current would be an interesting problem to solve. Since the

relations eq. (3.31) and eq. (3.39), which follow from the conservation of energy momentum

tensor, remain unchanged (up to an overall factor), given the α′ corrected bulk metric (3.48)

it is easy to check that the entropy current, up to O(ǫ), has the following form ,

4G5L
3b3Jµ

S =

(

1 − 3α′

L2

)

uµ. (4.2)

Again the entropy current does not receive any O(ǫ) correction. So to find out the α′

correction up to order O(ǫ2) to the entropy current, one has to first find the corrected

metric up to O(ǫ2) [27].

Although we have considered only the four derivative terms in the Lagrangian it would

be very interesting to generalise this idea for any higher derivative gravity. From the string

theory point of view it would be nice to construct the corrected local black D3 brane

geometry for R4 term [28].
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